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A B S T R A C T   

This systematic review summarizes the use of Bayesian networks in assessing risk in the energy sector based on 
peer-reviewed publications. The interest in risk analysis of the energy sector has increased with the number of 
energy resources and energy demand due to the need to supply energy with minimized interruptions and avoid 
hidden costs related to maintenance and recovery from accidents. A Bayesian network is a powerful tool that 
harmonizes information and expert judgment to evaluate the probability of different scenarios and events, 
making them helpful in assessing risk in the energy sector. However, their use in other energy systems devel
opment, such as oil refineries, nuclear power plants and biodiesel plants, has not been analyzed in a review. A 
systematic review has identified and appraised studies with Bayesian network applications in energy production, 
use and distribution for their scope, modeling aspects and use. The review shows that the applications of 
Bayesian networks in the energy sector can be improved regarding modeling choices, and recommendations for 
future works are drawn to aid the standardization of modeling practices.   

1. Introduction 

Technological development has brought us many new ways of living 
and solutions to make lives more comfortable. To operate these tech
nologies, however, society needs uninterrupted energy, and guarantee
ing its continuous supply is a priority for modern civilization, including 
enhancing efficient energy use and developing new sources for future 
use [1]. In this context, constant assessment of new and existing infra
structure in the energy sector is necessary for a reliable energy system 
due to the worldwide economic significance of energy production [2]. 

Therefore, researchers and operators rely on modern monitoring 
methods that provide information about the performance of a system 
and describe the state of service. These methods help to reduce costs, 
maintenance time and undesired events such as accidents in energy 
projects and infrastructure, keeping levels of risk at an acceptable level 
[2,3]. Risk regulates many aspects of modern life, which has led society 
to develop complex organizations to evaluate, communicate, and miti
gate risk [4]. 

Several methods are known to analyze the probability of unwanted 
events and project risk, including classical statistics, expert judgment 
and Bayesian methods [3]. Risk analysis methods are used in different 

contexts and help to reduce failures, accidents, economic drawbacks, 
environmental burdens of a range of energy-producing technologies and 
processes [5], and social inequalities [6]. They are often embedded in 
the decision-making process of stakeholders [2]. 

Specifically, Bayesian Networks (BN) have been widely used for 
complex risk assessment problems [7]. Based on graphical inference, BN 
can depict cause-and-effect relationships among variables or events. 
When applied to unknown incidents, BN can predict its probability, or 
this probability can be updated when it comes to some previously known 
circumstance [1]. 

Since the use of BN is diverse, it is of scientific interest to identify the 
factors underpinning its application and to understand the focus, main 
risks and events analyzed with this methodology and how it is applied 
within the energy sector. In fact, with the increasing importance of the 
energy sector and the growing need to understand and characterize the 
uncertainties and adversities within energy systems, the application of 
BN has continuously increased in the last decade. They can help 
decision-makers make informed decisions about energy investments, 
energy policy, and energy operations by allowing for the analysis of 
possible scenarios and the estimation of probabilities of different out
comes. They also provide a means for integrating multiple sources of 
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data and knowledge about energy systems, making it easier to identify 
cause-and-effect relationships and predict future energy behavior. This 
can lead to more efficient and effective energy systems that better meet 
the needs of consumers and the environment. For this reason, reviewing 
its use in the energy system will support future users in defining the 
scope and better handling their models. 

With that in mind, this review aims to screen and map the scientific 
applications of Bayesian networks in the energy sector regarding their 
focus, model establishment, procedures and types of risks presented in 
the literature. 

Therefore, a systematic literature review was conducted in this study 
using Scopus and Web of Science on peer-reviewed papers published 
from 2017 to 2022.568 articles were identified, screened for their fit to 
the scope of this study and 145 records were analyzed in full. Based on 
previously established criteria, 118 studies were included in the thor
ough analysis to evaluate their contribution to the risk assessment in the 
energy sector. 

The present study is divided into 5 sections. Section 2 introduces the 
main concepts related to Bayesian Networks. The adopted methodology 
is presented in Section 3. Section 4 presents the results of the review, and 
finally, Section 5 discusses the results. Section 6 briefly concludes the 
study. 

2. Bayesian networks 

BN is based on the Bayes theorem and is a graphical, mathematical 
model that represents the probabilistic relationships between nodes or 
variables. Since the advent of new computational capacities, BN has 
become popular in the decision-making process in various domains due 
to its ability to deal with high-complexity problems [8]. Fig. 1 shows an 
example of a BN. The example shows the constituents of a BN: 1) a 
directed acyclic graph that defines the dependency between the nodes 
(or variables) and 2) the quantification of the dependencies in the form 
of conditional probabilities [9]. 

Each variable is represented by states with two possible values, true 
or false. However, the variables can take more than two states and even 
have a continuous nature [10,11]. The arcs (arrows) in the BN specify 
the dependence among variables and guide the probability distribution 
among the random variables [12]. 

Each of the nodes in a BN has a specific probability distribution. An 
arc - (I,J) - express a dependence relation between nodes I and J, indi
cating that node I is the parent of the node (child) J, which implies that 
node J is affected by node I. When constructing a BN, it is necessary to 
inform the unconditional probabilities of all nodes and the resulting 
conditional probabilities of all child nodes, given all possible combina
tions of their direct parent nodes [12]. Equation (1) shows the 

calculation of the conditional probability of child nodes based on the 
states of each parent node: 

P(X1,X2,…,Xn)=
∏n

i=1
P(Xi|X1,…,Xi− 1)=

∏n

i=1
P(Xi|Parents(Xi)) (1) 

Although BN allows for calculating the conditional probabilities of 
the child nodes in the network based on the probabilities of the states in 
the parent nodes [12], challenges remain when constructing a BN. When 
databases with valuable information are available, the automation of 
constructing conditional probability tables (CPT) is possible [8]. How
ever, this is not the case in many situations, and experts’ opinions must 
be used to define the CPT manually [8,12]. The number of experts, 
nonetheless, depends on the modeler’s choice. Examples with 3 experts 
[13,14], or 22 [15] are found in the literature. 

In this context, it is necessary to elicit data from experts to define the 
CPT manually. However, given that the complexity of defining CPT in
creases exponentially, for large-scale BN, it becomes intractable to 
define all the probability functions that compose each CPT manually. 
Several methods are available to define the probabilities of each state in 
the child node without eliciting each value from the experts. A few ex
amples are the ranked nodes method (RNM) [7], the weighted sum al
gorithm (WSA) [16] and an adaptation of the analytic hierarchy process 
(AHP) method [17]. These methods are further explained in Ref. [8]. 

2.1. Steps to build a bayesian network 

The construction of BNs starts by defining the objectives of the model 
(Fig. 2). In risk analysis, modelers need to identify what risk is being 
analyzed, either “risk of” or “risk to.” Without a clear objective, the 
model outcome could be biased, or its use could be compromised. It is 
also essential to define the time horizon and geographic levels of the 
proposed model [18,19]. 

With a well-defined objective, a conceptual model is needed, i.e., a 
conceptualization of the influential aspects of the defined problem. After 
establishing a conceptual model, a group of experts, modelers and 
stakeholders will define the variables that influence the problem. 

After describing the variables in the model, the modeling team 
should define the variables and their interlinkages based on unidirec
tional arcs [11,18]. This is the definition of the influence diagram since 
BN is a causal framework where V1 influences V2, as shown in Fig. 1. It 
is crucial to remember that BN is an acyclical graph, meaning it does not 
allow loops back into the model. One of the goals here is to minimize the 
number of connecting arcs, searching for the simplest structure of con
nections and links between variables. 

Each variable of the BN, or node, represents observable events of 
measurable processes, which in many cases are continuous variables. 
Variable states might be.  

• Boolean when it takes only two values, such as true or false;  
• Categorical, when defined by categories like low, medium or high;  
• Discrete;  
• Continuous. 

Although discretization of continuous variables is not necessary, 
their use in continuous form is a limitation in computation and pro
gramming algorithms and reduces time demand when computing 
probabilities using expert judgment. There are several ways to discretize 
variables, such as equal distance and equal frequency intervals, or eli
cited from experts [9]. 

The defined states will serve as a parameter for experts to estimate 
the CPT or guide the algorithm when data is available. As mentioned in 
the previous section, the CPT describes the probability of a child node or 
variable being within a state, given a combination of parent state values 
[19,20]. 

The next step is to evaluate the model and its applicability through 
Fig. 1. Example of a BN network with 5 nodes and the conditional probabilities 
of each node. 
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validation. Kaikkonen et al. [9] explain the existing methods for model 
validation, which can be divided into.  

• “Train and test,” when the performance of a data-based model is 
evaluated against other data sets not included in the modeling 
process;  

• “Cross-validation” is when database pieces are removed repeatedly, 
and the constructed model is tested against the excluded data.;  

• “Expert evaluation”, is when expert judgment is used to evaluate the 
model results.  

• “Sensitivity analysis”, which tests the strength of the links within the 
model and the value of information;  

• Goodness-of-fit, which identifies the model’s capacity to predict the 
same data used to build the model. 

Finally, the application of the model will provide the expected 
analysis. For model use, four categories are used. When modelers 
compute posterior probabilities, model use is classified as inference, 
evidence propagation or belief upgrading [21]. Another option is 
characterization when no previous probabilities exist on the problem at 
hand, and BN is used to obtain the first result. In the end, if there are 
inconsistencies or unrealistic results, modelers might restart the process, 
back to redefining the model’s objectives. 

These steps are translated into attributes to aid the evaluation of the 
BN construction in the reviewed studies and will serve as a basis for 
analyzing the publications and recommendations for future applications 
of BN in the energy sector. 

Source: Based on [22]. 

3. Review methodology 

A systematic review is a comprehensive, structured, systematic ex
amination of the existing evidence on a particular research question. It is 
evidence synthesis involving a thorough search, critical appraisal, and 
synthesis of relevant studies to answer a specific research question. A 
systematic review aims to provide a comprehensive, transparent, and 
unbiased summary of the current evidence base on a particular topic. 
They are considered the highest level of evidence in the hierarchy of 
evidence and are widely used in health and social sciences research to 
inform clinical and policy decision-making. This review aims to sum
marize the use of BN in the energy sector, providing an overview of the 
practice and applicability of this methodology in the energy sector. The 
parameters established for this review are shown in Table 1. 

The application of BN in the energy sector has a wide range of ob
jectives, such as blowouts during the drilling of oil wells [5], accidents in 
natural gas stations [23] and economic risk assessments [14]. However, 
many of these applications lack proper reporting of methodological 
choices made. Therefore, this review analyses the literature to provide 
future research with insights and recommendations for a suitable 
description of BN implementation. This work used the following sys
tematic review methodology to analyze the use of BN in energy studies 
properly. 

The search for articles was conducted on Web of Science and Scopus 
in January–February 2023. The search strings were defined as “energy 

Bayesian network risk” to explore the studies that apply BN in the energy 
sector context. This review only focuses on articles in English from 2017 
to 2022 and published in peer-review scientific journals. 

The process of article selection is shown in Fig. 3 (left). First, articles 
were screened by title and abstract to check for their fit to this study’s 
objectives after removing duplicate records. To be included in the re
view, the articles had to analyze some risk aspects of an energy system, 
infrastructure, economic viability or any other application of the BN 
model to risk assessment within the energy sector. From the 832 records 
found in the searched database, 645 were excluded from the analysis for 
not dealing with the energy system. 

After screening each abstract and title, the remaining 187 records 
were screened. 69 articles were excluded in this step of the review. From 
these, 6% were removed because they were reviews, 11% of the texts 
were unavailable for download, and 83% used different Bayesian 
methods for analysis other than the network. 

Therefore, 118 publications were selected for further analysis. These 
publications were screened based on the steps for building a BN 
explained in section 2.1 to determine the quality of the application of BN 
in the energy sector. The articles were screened for the sector of interest, 
type of risk analyzed, the objective of the model, variables used in the 
model, who selected the variables and source of information for the 
selection, who defined the interlinkages between the variables and the 
source of information for the definition of the interlinkages of variables, 
who and how the conditional probabilities were defined, the number of 
experts involved in the framing of the model and the type of BN used in 
the analysis. Table 1 shows the attributes analyzed in this review. 

4. Results 

4.1. Scope of analyzed models 

The 118 articles included in the analysis presented a variety of risk 
assessments in different domains and sectors. Fig. 4 shows a word cloud 
of the focus of each article regarding the risk they intend to investigate. 
The most targeted types of risk can be seen in this word cloud and are 
heavily focused on oil&gas and nuclear power chains, involving infra
structure of oil wells, such as the risk of oil spills and oil well blowouts, 
gas pipeline leakages and accidents in nuclear power plants. For 
example [5], used BN to analyze the risk of an offshore well blowout 

Fig. 2. Steps to build a Bayesian network.  

Table 1 
Systematic review protocol used in this study.  

Description Review of papers using Bayesian networks to assess 
technological development risk 

Objectives This review aims to identify the uses of Bayesian networks and 
causal maps to assess technological development risk in the 
energy sector and to identify which variables affect their 
development the most. 

Keywords Bayesian networks; Bayesian causal maps; risk assessment; 
technology risk; energy sector 

Source Engine Scopus; Web of Science 
Source Selection 

Criteria 
English; between 2018 and 2022.  

P. Gerber Machado et al.                                                                                                                                                                                                                     



Energy Strategy Reviews 47 (2023) 101097

4

during drilling, and [24] investigated the risk of an oil well blowout 
during managed pressure drilling. In nuclear power plants, the examples 
range from seismic failures [25], vulnerability to floods [26], software 
reliability of digital instrumentation [27] and cyber-attacks [28]. 

Each article was also classified into the categories in Table 3. Cate
gories are split into “risk of” and “risk to,” according to the type of risk 
assessed in each article. While “risk of” studies investigate the influential 
factors on the risk of events, “risk to” analyses involve identifying and 
assessing potential risks, developing strategies to mitigate and manage 
those risks, and ensuring that the system can withstand and recover from 
disruptive events. For example, “Risk to resilience” refers to the trans
formation from a state of vulnerability to a state of robustness, where 
systems can withstand and recover from potential adverse events. Sar
war et al. [29] focus on the resilience analysis of an offshore oil and gas 
facility. The authors use a risk analysis approach to identify potential 
risks to the facility and develop strategies to enhance the system’s 
resilience during a potential hydrocarbon release. 

Accidents, leaks, cyber-attacks, oil spills, and structural health are 
some risk categories on which the articles in this review focus. Although 
a leak or an oil spill might be considered an accident, most of the time, 
authors did not specify the type of accidents they were referring to, and 
their risk analysis focused on a general risk of accidents. When a specific 
accident was mentioned, they were split into different categories. 

While “risk of” studies investigate the influential factors on the risk of 
events, “risk to” analyses involve identifying and assessing potential 
risks, developing strategies to mitigate and manage those risks, and 

ensuring that the system can withstand and recover from disruptive 
events. For example, “Risk to resilience” refers to the transformation 
from a state of vulnerability to a state of robustness, where systems can 
withstand and recover from potential adverse events. Sarwar et al. [29] 
focus on the resilience analysis of an offshore oil and gas facility. The 
authors use a risk analysis approach to identify potential risks to the 
facility and develop strategies to enhance the system’s resilience during 
a potential hydrocarbon release. 

Each article was attributed to a sector within the energy domain, and 
the risk assessments were classified into the risk classes shown in 
Table 2, which are presented in Fig. 5. It is important to note that the risk 
classes shown are not limited to one per article, but instead, they are 
related to the factors that influence risks taken into account within each 
proposed model. Despite the broad range of risk assessments, there is a 
high concentration of studies in the technical risk domain applied in the 
oil & gas industry and nuclear power plants, followed by environmental 
risk assessments involving the oil&gas and nuclear industries. 

88% of the articles in the review addressed some technical param
eters to assess risks in the oil & gas and nuclear power plants. One 
example is the work of Sarwar et al. [29], who evaluated hydrocarbon 
release based on technical aspects of offshore oil & gas facilities design, 
such as the platform hose connection system, valves control, and 
telemetry system and equipment vibration. Groth et al. [30] used 
technical parameters of a nuclear power plant like cold pool tempera
ture and level, peak coolant temperature, cover gas pressure and 
Doppler feedback reactivity to investigate the risk of accidents. 

Fig. 3. Step-by-step process for literature screening (left) and papers included in the analysis by year (right).  

Fig. 4. Word cloud of risk assessments in the energy sector of the articles included in the review.  
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On the other hand, few studies focus on assessing the risk of 
renewable energy, with 11% of the articles in the review. Biofuels, for 
example, are analyzed by Sajid et al. in three different publications [13, 
31,32], which focus on biodiesel economic risk, the impact of corona
virus on the sustainability of the biomass supply chain and the perfor
mance of biodiesel. 

4.2. Variable selection 

The evaluation of BN models in this review started with the variables 
included in the model, who selected these variables and the source of 
information used to include each variable in the model framework. 
Fig. 6 shows the word cloud of variables in the studies included in the 
analysis. As can be seen, technical variables related to corrosion, pres
sure, valves, sensors, temperature, the flow of fluids of energy infra
structure and domain-specific instrumentation, computation and 
automation are included in the BN models to evaluate the risk of failure, 
leakages and safety in energy systems operations. Although human error 
is the most prominent known factor in the case of accidents in the oil
&gas industry [33], for example, only 10% of the analyzed studies 
included this variable in their models. 

These variables are selected mainly by the modeling groups them
selves (Fig. 7), with 87% of the articles depending on the knowledge of 
their authors to establish the model framework and in the majority of the 
studies (82%), these modeling groups are composed of people involved 
in one area of expertise, for example, engineering. Most of the time, 
these modelers take information from existing data (Data from the 
Literature DL) to verify the effect of each variable on the risk being 

Table 2 
Attributes, their related questions and the class of each attribute analyzed in this 
review.  

Attribute Question Class 

Sector Within the energy sector, 
what is the main focus of 
the article? 

Oil & gas, nuclear power, 
electricity in general, hydrogen, 
wind turbines, energy systems in 
general, Carbon Capture and 
Storage (CCS), biodiesel, gas 
turbines, combined cooling, heat 
and power, renewable energy, 
wave energy and biofuels in 
general. 

Objective of the 
study 

What is the main focus of 
the article? 

Several possibilities – Word 
cloud result 

Risk class What type of risk is being 
studied? 

Technical, environmental, 
safety, social, economic, 
political, legal 

Variables What variables were 
included in the model? 

Several possibilities – word 
cloud result 

Model framing – 
Whoa 

Who selected the 
variables in the model? 

Modeler or modeling team one- 
disciplinary (MO)/Modeling 
team multidisciplinary (MM)/ 
External expert or expert team 
one-disciplinary (EO)/External 
expert team multidisciplinary 
(EM)/Non-expert stakeholders 
(SH)/No information (NI) 

Model framing – 
Source of 
informationa 

How were the variables 
selected? 

Learned or modeled based on 
data (DL)/Literature-based (L)/ 
Expert judgment (EJ)/Non- 
expert judgment (NJ)/Other 
(O)/No information (NI) 

Model structure – 
Who 

Who participated in 
defining the links 
between variables? 

Modeler or modeling team one- 
disciplinary (MO)/Modeling 
team multidisciplinary (MM)/ 
External expert or expert team 
one-disciplinary (EO)/External 
expert team multidisciplinary 
(EM)/Non-expert stakeholders 
(SH)/No information (NI) 

Model structure – 
Source of 
information 

How were the links 
between variables 
defined? 

Learned or modeled based on 
data (DL)/Literature-based (L)/ 
Expert judgment (EJ)/Non- 
expert judgment (NJ)/Other 
(O)/No information (NI) 

Probabilities – 
Who 

Who participated in 
producing the 
probabilities? 

Modeler or modeling team one- 
disciplinary (MO)/Modeling 
team multidisciplinary (MM)/ 
External expert or expert team 
one-disciplinary (EO)/External 
expert team multidisciplinary 
(EM)/Non-expert stakeholders 
(SH)/No information (NI) 

Probabilities – 
Source of 
information 

How were the 
probabilities produced? 

Learned or modeled based on 
data (DL)/Literature-based (L)/ 
Expert judgment (EJ)/Non- 
expert judgment (NJ)/Other 
(O)/No information (NI) 

Discretization How was discretization 
done? 

Learned from data by an 
algorithm (DL)/Based on data- 
analysis (incl. literature) (DA)/ 
Elicited based on expert 
knowledge (EE)/Elicited from 
non-expert stakeholders (ES)/ 
Equal Distance Interval (EDI)/ 
Equal Frequency Intervals (EFI)/ 
Other (O)/No information (NI) 

Validation What type(s) of 
validation method(s) is 
(are) used? 

Train & Test (TT)/Cross 
Validation (CV)/Expert 
evaluation (E)/Comparison to 
previous models (PM)/ 
Sensitivity analysis (SA)/ 
Goodness of fit (GF)/No 
validation (NV)  

Table 2 (continued ) 

Attribute Question Class 

Model Use How is the study’s model 
used to answer the 
research questions? 

Inference (I)/Characterization 
(CH)/Other (O)/Not applicable 
(NA) 

Number of experts How many experts were 
involved in the 
construction of the 
model? 

Number of experts involved/No 
experts involved (NE)/No 
information (NI) 

Type of BN What type of BN was 
used in the model? 

Types of BN (shown in the 
results) 

Intended end-user 
of the model 

Who is the intended end- 
user of the model? 

The model developers 
themselves (MD)/Other 
scientists (OS)/Decision-makers 
(incl. Planners and managers) 
(DM)/Stakeholders (SH)/ 
Teachers (T)/Common public 
(CP)/Not clear (NC)  

Table 3 
Risk focus of the reviewed articles and each occurrence that falls in each 
category.  

Risk of References 

Accidents (including fires) [3,23,26,30,35,48–50,52,53,56,58,60–62, 
68–87] 

Leaks [40,51,57,88–92] 
Cyber attacks [27,28,47,93–95] 
Failures and faults [38,39,41,42,44,63,65–67,96–104] 
Oil spills and blowouts [5,24,37,105–107] 
Seismic hazards [25,108,109] 
Risk to 
Performance [34,110] 
Resilience and reliability [1,29,64,111–114] 
Security, safety and human 

error 
[2,15,36,115–118] 

Structural health [59,119–126] 
Investments [14,31,127–129] 
Other risks (including multi- 

risk) 
[13,32,43,54,130–137]  
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Fig. 5. Sector (top) and risk class (bottom) of the selected articles.  

Fig. 6. Word cloud of variables included in the BN model for risk assessment in the energy sector.  

Fig. 7. Who selected the variables in the BN model (framing, top left), how the variables were selected (top right), who defined the links between the variables 
(model structure, bottom left) and how the links were defined (bottom right). 
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assessed. Another option widely used is the mixture between expert 
knowledge and data available (DL/EJ). Expert judgment is used mostly 
when data is unavailable or to fill missing gaps. For example, Ashrafi 
[34] had data indicating an operating or failed state of components in 
petroleum refineries. On the other hand, for variables related to human 
error in individual, group, organizational, and environmental segments 
of the model, experts’ elicitation had to be used to fill in the missing 
values of the CPT developed by the author. 

In their majority (78%), BN links have been determined by modelers. 
Again, expert judgment was used to fill gaps in the existing data. 

Although risk assessments are a multivariate problem in most cases, 
the use of multidisciplinary teams to define the variables and their links 
appears only in five studies [2]. in their application of the BN model to 
assess the risk of human safety in energy production units [35], in their 
analysis of single-phase grounding of power transmission lines [36], 
who studied the risk of nuclear proliferation [37], in their study on oil 
spills; [34], who analyzed the risk of hydro desulphurization technology 
in oil refineries. Note that there is a difference between modelers 
selecting variables based on expert judgment and having the experts 
build the framework of the model based on their knowledge. This dif
ferentiation appears in the articles when the authors mention that var
iables were selected “based on the expert judgment” or “experts selected 
the variables." 

4.3. Produced probabilities 

The quantifiable portion of a BN model is the definition of CPT. It 
specifies the probability of an event based on the occurrence of other 
events. In the case of child and parent nodes, the number of probabilities 
to be determined increases exponentially with the number of influential 
variables or child nodes. Fig. 8 shows who and how the probabilities 
were estimated in the reviewed articles. As for the variable selection, the 
modelers mainly estimated CPT using data or data with some input from 
experts’ judgment. 

From the full-text analysis, it was possible to perceive that the arti
cles focused on technical issues or included technical variables such as 
digital control and automation sensors information. Most papers used 
auxiliary methods to analyze risk and translate the structure of these 
methods to BN models. Fault-tree [1,38], Event-tree [39], Bow-tie [40, 
41], GO model (or GO-FLOW) [42,43], structural reliability analysis 
[26], failure mode and effects analysis [23], and Living Risk Assessment 
framework [44] are some examples of risk analysis methods that served 
as a basis for the construction of the CPT and structure of BN models 
used in the articles reviewed. 

On the other hand, examples show that merging other methods with 
expert judgments with multidisciplinary points of view is possible [35]. 
show a robust methodology to define the CPT using the Delphi technique 

(an expert-based process used to gather and arrive at a group opinion or 
decision by a survey [45]), which guarantees a more robust and more 
straightforward definition of the produced probabilities in the study. 

4.4. Model handling 

In modeling studies, it is essential to explicitly explain the premises 
and data used in the construction of the model and how it was handled to 
avoid bias from the reader. However, the analyzed articles in this review 
lacked the reliability and transparency necessary for scientific commu
nication since reproducibility is compromised when incomplete infor
mation on the methodology followed to construct the model is provided 
[46]. Fig. 9 shows the discretization (top), model application (center) 
and model validation method (bottom) of the articles included in the 
review. For intended end-users of the model, number of experts involved 
and BN type, see Fig. 10. 

First, discretization is an important task of BN because it influences 
the construction of the CPT. In many cases, true/false variables are used, 
and no discretization is needed, but no explanation is given on this 
matter, which makes it harder for the reader to understand the true class 
of the variable. Moreover, 46% of the articles presented no information 
(NI) about the method to discretize the variables used in the BN models. 
However, examples of good practices are found in Refs. [30,47], which 
clearly state the discretization method used, which in these cases was 
the equal distance method. 

Second, when applying the model, most papers used BN to make 
inferences about the variable representing the risk being analyzed, fol
lowed by characterization of the risk, i.e., the first estimation of the risk 
under interest. However, there is a lack of proper communication of this 
objective within the studies. Most of the articles assume that BN is 
applied for inference and forget to specify inference in the statement of 
their objectives. 

Lastly, validation in the BN model is a sensitive issue. Fig. 9 shows 
that 39% of the studies in the review did not validate their models, while 
28% used sensitivity analysis as a validation method. 

4.5. Model value 

60 out of 118 articles mention that BN would help the decision- 
making process or support decision-makers with their work, and most 
of the time, models are constructed using a sector-specific database or 
from a case study. 

One issue with the value of the models created in the studies 
reviewed is the unclear method for expert judgement elicitation. Even 
though Figs. 7 and 8 show considerable expert support for defining the 
variables, structures and constructing the CPT in each model, the ma
jority of articles (58 out of 118) do not specify the elicitation method, 

Fig. 8. Estimation of probabilities, who produced them (top) and how they were estimated (bottom).  
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how the data obtained was handled or even the number of experts that 
have been elicited to build the model. In contrast [36], explicitly dis
closed how, who and why the experts were elicited and presented the 
second highest number of experts elicited, with 13 in total, behind [15], 
with 22 experts included in their study. 

Finally, 74% of the studies choose static BN when it comes to 
modeling risk in energy, which alone does not implicate a low-value 
model. However, energy systems are dynamic and, in their majority, 
creating a dynamic model would make it more complex but closer to 
reality. Authors like [48,49] mention dynamic models as steps for future 
research. 

5. Discussion 

5.1. The most relevant studies in the field 

To highlight the most prominent studies in the field, this section 
analyses the most relevant studies based on their number of citations 
based on the Web of Science and Scopus database. 

Two references stand out due to their influence in other publications 
in the field. Wu et al. [50] employ BN to analyze natural gas pipeline 
network accidents using the Dempster-Shafer evidence theory to weigh 
expert knowledge. The authors have 108 citations, representing the 
highest citation in the dataset. Chang et al. [51], with 43 citations, study 
the risk of hydrogen leakage in hydrogen generation units based on a 
dynamic Bayesian network built using data and expert knowledge. 

Indeed, both studies reflect the use of Bayesian networks in energy 
systems in their technical aspect and focus on accidents and leakages. 
However, while Wu et al. [50] analyze the oil& gas sector, Chang et al. 
[51] stand out for their application in hydrogen production. 

5.2. Application of BN in the energy sector 

Energy is a part of the everyday life of most humans and is the result 
of complex systems development, which are not immune to several 
classes of risk (technical, environmental, economic and so on). There
fore, the literature on risk assessment of energy production, distribution 
and use includes various types of risks from technical, economic, envi
ronmental, safety and other areas, showing the broad application of BNs 
in energy risk modeling. 

BN is an appropriate methodology to analyze risk since it is anchored 
on stochastic events and allows an event to happen conditioned to other 
events. It allows for an investigative process of causality and provides 
means to prevent catastrophic or damaging events. For this reason, some 
of the publications in this review might focus on some adjacent activity, 
such as the work by Ref. [52]. The authors focused primarily on vessel 
allision near offshore wind farms. Therefore, the variety of applications 
in the energy realm can hamper the generalization of the analysis of this 
review, and the inclusion of such studies is subjective and open to 
criticism. 

Although BN is helpful for risk assessments, the application of this 
methodology is extraordinarily case-specific, and its replicability is not 

Fig. 9. Discretization method (top), application of the model (center) and validation method (bottom).  

Fig. 10. Intended end-users of the model (top), number of experts involved (center), Bayesian network type (bottom).  
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possible due to the different factors influencing each type of risk. Hence, 
the resulting BN model is completely different even when dealing with 
similar risks. Considering the works by Refs. [5,25], both studies 
analyzed the risk of an oil well blowout during drilling but resulted [25] 
in two different model structures in terms of the number of variables, 
types of variables and interlinkages between variables as well as CPTs. 

As mentioned, BN is a flexible tool for risk assessment in terms of the 
type of risk and the activity it models. Nonetheless, what catches 
attention is the concentration of studies on accidents, infrastructure 
vulnerability and failure of safety systems within the energy sector, 
especially in the oil & gas sector. With the current changes expected in 
the energy sector due to climate change and other global issues such as 
pollution and international and regional conflicts over resources, one 
could expect that more environmentally friendly energy options would 
be the focus of risk analysis, like the ones done by Ref. [53] (renewable 
energy) and [31] (biodiesel), or such as the one done by Ref. [54], who 
investigated the impacts of social and environmental conflicts on energy 
projects. 

5.3. Modeling aspects and implementation technicalities 

Considering the diversity in the articles and models studied in this 
review, they provide an overview of the implementation techniques of 
BN models. In their majority, models are based on expert judgement in 
at least one of the steps of the modeling process, either selecting the 
variables, defining the links, creating the CPTs or even validating the 
model. However, some improvements are still necessary in terms of 
transparency on expert selection, such as who they are, how they were 
selected and even how many experts took part in the model construction 
process. Future authors using BN should follow guidelines for expert 
elicitation [55]. 

Discretization is another critical aspect of BN modeling that authors 
ignore, even when the BN is discrete. Discretization makes the con
struction of CPT easier, especially when involving expert judgment, 
because it allows for the application of probability estimation using 
simplifiers, such as the ranked nodes method (RNM) [7], weighted sum 
algorithm (WSA) [16], and the analytic hierarchy process (AHP) method 
[17]. In discrete models, the process of CPT elicitation grows exponen
tially with the number of nodes without applying such methods; there
fore, discretization helps reduce experts’ mental load. However, 
selecting a discretization method that reduces the loss of information, 
clearly states how discretization was done and maintains the represen
tation of relevant changes in the system being assessed is vital. 

Another important aspect of modeling overlooked and under
reported by authors, which has also been noticed by Ref. [9] in their 
review, is model validation. Sensitivity analysis was often used where 
validation was reported, followed by a comparison to previous models. 
Nevertheless, validation should be encouraged to guarantee the appli
cability of the models to real-world situations. 

5.4. Authors’ perception of the pros and cons of developed models 

Each article included in the review was screened for the pros and 
cons of the models built. Generally, the features of BN models that make 
them suitable for risk analysis have been pointed out as pros of the usage 
of BN in the specific objectives of each study. Diagnosing system failures 
[30], determining the likelihood of various events under uncertainty 
[56], the interconnection between risk factors [29], incorporating a 
wide range of contributing factors ignored in previous studies [57], 
evaluating the accident evolution process and accident consequences 
[58], useful as a post-auditing tool to evaluate progress in mitigating 
risks [49], qualitatively and quantitatively analyze cause factors in 
emergency processes [48], adapt to missing data [59], incorporation of 
diverse data streams [60], are some of the pros mentioned by the 
authors. 

On the negative side, authors have stated cons that are intrinsic to BN 

models in general, such as applying to a particular country [3,61], using 
simple or generic scenarios [52], subjectivity due to the inclusion of 
expert judgment [62,63,64,36,54], need for real-world field data 
application [65], high computational effort [26], lack of accurate data 
[66], difficulty in obtaining data from real-life applications due to 
confidentiality [67], limited risk categories [68,41,36], not including 
experts from multi disciplines [31], use of generic data [69]. 

5.5. Recommendations for future research 

In this section, the recommendations for future research found in the 
articles are summarized and displayed in Table 4. The topics included 
are not exhausted of all possible BN developments when applied to the 
energy sector, and some of these could also be generalized to applica
tions of BN in other sectors. 

Dynamic models and using continuous variables are improvements 
to BN models that help BN model reality more precisely since many of 
the issues influencing risk in the energy sector are dynamic and 
continuous. Therefore, static and discrete models could represent an 
oversimplification of events. 

Data availability is another issue in the construction of BN models, 
which also leads to the necessity to include expert judgments in the 
construction of the model, leading to subjectivity issues. In the reviewed 
articles, the need for more data has been pointed out as an important 
future development in BN. Although data is seldom available as needed, 
modern data mining methods could aid in obtaining the necessary data 
for the model construction. 

Model validation is a crucial aspect of any modeling; otherwise, its 
application to real-world problems could be misleading. In this sense, for 
future works, validation should always be considered and, if not 
possible, justified. While model validation helps guarantee the replica
bility of the model to real-life situations, optimizing the model structure 
helps the reduction of model complexity, which influences subjectivity 
when expert judgment is required to build the model. When the struc
ture is optimized, modelers will spend less time with expert elicitation 
without losing the model’s ability to provide helpful information. 

Other topics, such as model translation into software, testing with 
other scenarios, cooperating with enterprises and testing with real sys
tems, relate to model applicability and reproducibility. While models are 
helpful for decision-makers, their actual use can be tricky depending on 
their level of knowledge around programming and reading models’ 
outputs. Therefore, producing some software that enables decision- 
makers to test different scenarios quickly and explore the multitude of 
outcomes of each model should break down barriers for model appli
cation. Moreover, stakeholders are generally only involved in specific 
parts of the modeling but not throughout the entire process, which leads 
to oversimplifications or generic models. If stakeholders and enterprises 
interested in the risk being analyzed through the models were included, 
models should become more consistent with practical needs. 

Finally, global environmental and social climates are constantly 

Table 4 
Summary of future research recommendations to enhance the applications of BN 
in the energy sector.  

Topic Source 

Dynamize the model [30,49,57,106,111] 
Use of continuous variables [29] 
Using data mining methods [58,62] 
More data [61,91,54,138] 
Validation of the model [117] 
Optimize model structure [26] 
Translation of model into software [92,65] 
Test with other scenarios [74] 
Cooperate with enterprises [67] 
Test with real systems [99,126] 
Integrate with climate models [97] 
Include economic and environmental factors [32]  
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changing and intrinsically related to energy production and consump
tion. Therefore, holistically including other aspects of the social and 
environmental domain in BN models would bring new insights into the 
risks associated with developing energy systems and their components. 
Furthermore, climate change can impact the energy sector and energy 
markets everywhere, and interconnections between BN models and 
climate models are advisable to unravel new layers of risk within energy 
products. 

6. Conclusions 

This review examined BN applications in the energy sector, including 
production, use and distribution. The systematic review showed that 
using BN in risk analysis encompasses various objectives and is focused 
on different types of risk, such as leaks, cyber-attacks, failures, faults, oil 
spills, investments, structural health and others. Nonetheless, although 
the application areas were diverse, most BN models in the review were 
interested in technical assessments of oil & gas infrastructure risk, 
technical assessment of nuclear power plants risks or environmental 
risks of oil & gas deployment, with only a few studies covering socio
economic risks. 

BN is an essential tool for the energy sector, for it can help decision- 
makers make informed decisions about energy investments, energy 
policy, and energy operations. BN can provide valuable insights into the 
trade-offs and risks involved in different decisions by allowing for the 
analysis of possible scenarios and the probabilities of different out
comes. BN can easily integrate multiple sources of data and knowledge 
about energy systems, such as historical data, simulations, expert 
opinions, and sensor readings. This helps to build a completer and more 
accurate model of the system and to identify cause-and-effect 
relationships. 

However, the need for more transparency regarding using experts’ 
judgments and validating the models has been highlighted to guarantee 
their ability to support real-world decision-making procedures. More
over, it is suggested that social, environmental and economic aspects are 
included to provide a more holistic risk assessment in sustainability, 
especially when considering climate change prospects. Developing 
sound and robust BN based on state-of-the-art methods such as Deep 
Learning Models is another step toward more reliable models. 

In conclusion, applying BNs in the energy sector can shift the context 
into more environmentally friendly energy options, assess their risk in 
an oil & gas-dominated sector, and bridge the gap between science and 
real-world applications. 
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