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ARTICLE INFO ABSTRACT

Handling Editor: Dr. Mark Howells This systematic review summarizes the use of Bayesian networks in assessing risk in the energy sector based on
peer-reviewed publications. The interest in risk analysis of the energy sector has increased with the number of
energy resources and energy demand due to the need to supply energy with minimized interruptions and avoid
hidden costs related to maintenance and recovery from accidents. A Bayesian network is a powerful tool that
harmonizes information and expert judgment to evaluate the probability of different scenarios and events,
making them helpful in assessing risk in the energy sector. However, their use in other energy systems devel-
opment, such as oil refineries, nuclear power plants and biodiesel plants, has not been analyzed in a review. A
systematic review has identified and appraised studies with Bayesian network applications in energy production,
use and distribution for their scope, modeling aspects and use. The review shows that the applications of
Bayesian networks in the energy sector can be improved regarding modeling choices, and recommendations for
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future works are drawn to aid the standardization of modeling practices.

1. Introduction

Technological development has brought us many new ways of living
and solutions to make lives more comfortable. To operate these tech-
nologies, however, society needs uninterrupted energy, and guarantee-
ing its continuous supply is a priority for modern civilization, including
enhancing efficient energy use and developing new sources for future
use [1]. In this context, constant assessment of new and existing infra-
structure in the energy sector is necessary for a reliable energy system
due to the worldwide economic significance of energy production [2].

Therefore, researchers and operators rely on modern monitoring
methods that provide information about the performance of a system
and describe the state of service. These methods help to reduce costs,
maintenance time and undesired events such as accidents in energy
projects and infrastructure, keeping levels of risk at an acceptable level
[2,3]. Risk regulates many aspects of modern life, which has led society
to develop complex organizations to evaluate, communicate, and miti-
gate risk [4].

Several methods are known to analyze the probability of unwanted
events and project risk, including classical statistics, expert judgment
and Bayesian methods [3]. Risk analysis methods are used in different

contexts and help to reduce failures, accidents, economic drawbacks,
environmental burdens of a range of energy-producing technologies and
processes [5], and social inequalities [6]. They are often embedded in
the decision-making process of stakeholders [2].

Specifically, Bayesian Networks (BN) have been widely used for
complex risk assessment problems [7]. Based on graphical inference, BN
can depict cause-and-effect relationships among variables or events.
When applied to unknown incidents, BN can predict its probability, or
this probability can be updated when it comes to some previously known
circumstance [1].

Since the use of BN is diverse, it is of scientific interest to identify the
factors underpinning its application and to understand the focus, main
risks and events analyzed with this methodology and how it is applied
within the energy sector. In fact, with the increasing importance of the
energy sector and the growing need to understand and characterize the
uncertainties and adversities within energy systems, the application of
BN has continuously increased in the last decade. They can help
decision-makers make informed decisions about energy investments,
energy policy, and energy operations by allowing for the analysis of
possible scenarios and the estimation of probabilities of different out-
comes. They also provide a means for integrating multiple sources of
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data and knowledge about energy systems, making it easier to identify
cause-and-effect relationships and predict future energy behavior. This
can lead to more efficient and effective energy systems that better meet
the needs of consumers and the environment. For this reason, reviewing
its use in the energy system will support future users in defining the
scope and better handling their models.

With that in mind, this review aims to screen and map the scientific
applications of Bayesian networks in the energy sector regarding their
focus, model establishment, procedures and types of risks presented in
the literature.

Therefore, a systematic literature review was conducted in this study
using Scopus and Web of Science on peer-reviewed papers published
from 2017 to 2022.568 articles were identified, screened for their fit to
the scope of this study and 145 records were analyzed in full. Based on
previously established criteria, 118 studies were included in the thor-
ough analysis to evaluate their contribution to the risk assessment in the
energy sector.

The present study is divided into 5 sections. Section 2 introduces the
main concepts related to Bayesian Networks. The adopted methodology
is presented in Section 3. Section 4 presents the results of the review, and
finally, Section 5 discusses the results. Section 6 briefly concludes the
study.

2. Bayesian networks

BN is based on the Bayes theorem and is a graphical, mathematical
model that represents the probabilistic relationships between nodes or
variables. Since the advent of new computational capacities, BN has
become popular in the decision-making process in various domains due
to its ability to deal with high-complexity problems [8]. Fig. 1 shows an
example of a BN. The example shows the constituents of a BN: 1) a
directed acyclic graph that defines the dependency between the nodes
(or variables) and 2) the quantification of the dependencies in the form
of conditional probabilities [9].

Each variable is represented by states with two possible values, true
or false. However, the variables can take more than two states and even
have a continuous nature [10,11]. The arcs (arrows) in the BN specify
the dependence among variables and guide the probability distribution
among the random variables [12].

Each of the nodes in a BN has a specific probability distribution. An
arc - (I,J) - express a dependence relation between nodes I and J, indi-
cating that node I is the parent of the node (child) J, which implies that
node J is affected by node I. When constructing a BN, it is necessary to
inform the unconditional probabilities of all nodes and the resulting
conditional probabilities of all child nodes, given all possible combina-
tions of their direct parent nodes [12]. Equation (1) shows the
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Fig. 1. Example of a BN network with 5 nodes and the conditional probabilities
of each node.
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calculation of the conditional probability of child nodes based on the
states of each parent node:

P(X1, X, ... X,) = [[PXilX1, .. Xioh) = [ [ P(Xil Parents(X,)) 1)
i=1 i=1

Although BN allows for calculating the conditional probabilities of
the child nodes in the network based on the probabilities of the states in
the parent nodes [12], challenges remain when constructing a BN. When
databases with valuable information are available, the automation of
constructing conditional probability tables (CPT) is possible [8]. How-
ever, this is not the case in many situations, and experts’ opinions must
be used to define the CPT manually [8,12]. The number of experts,
nonetheless, depends on the modeler’s choice. Examples with 3 experts
[13,14], or 22 [15] are found in the literature.

In this context, it is necessary to elicit data from experts to define the
CPT manually. However, given that the complexity of defining CPT in-
creases exponentially, for large-scale BN, it becomes intractable to
define all the probability functions that compose each CPT manually.
Several methods are available to define the probabilities of each state in
the child node without eliciting each value from the experts. A few ex-
amples are the ranked nodes method (RNM) [7], the weighted sum al-
gorithm (WSA) [16] and an adaptation of the analytic hierarchy process
(AHP) method [17]. These methods are further explained in Ref. [8].

2.1. Steps to build a bayesian network

The construction of BNs starts by defining the objectives of the model
(Fig. 2). In risk analysis, modelers need to identify what risk is being
analyzed, either “risk of” or “risk to.” Without a clear objective, the
model outcome could be biased, or its use could be compromised. It is
also essential to define the time horizon and geographic levels of the
proposed model [18,19].

With a well-defined objective, a conceptual model is needed, i.e., a
conceptualization of the influential aspects of the defined problem. After
establishing a conceptual model, a group of experts, modelers and
stakeholders will define the variables that influence the problem.

After describing the variables in the model, the modeling team
should define the variables and their interlinkages based on unidirec-
tional arcs [11,18]. This is the definition of the influence diagram since
BN is a causal framework where V1 influences V2, as shown in Fig. 1. It
is crucial to remember that BN is an acyclical graph, meaning it does not
allow loops back into the model. One of the goals here is to minimize the
number of connecting arcs, searching for the simplest structure of con-
nections and links between variables.

Each variable of the BN, or node, represents observable events of
measurable processes, which in many cases are continuous variables.
Variable states might be.

Boolean when it takes only two values, such as true or false;
Categorical, when defined by categories like low, medium or high;
Discrete;

Continuous.

Although discretization of continuous variables is not necessary,
their use in continuous form is a limitation in computation and pro-
gramming algorithms and reduces time demand when computing
probabilities using expert judgment. There are several ways to discretize
variables, such as equal distance and equal frequency intervals, or eli-
cited from experts [9].

The defined states will serve as a parameter for experts to estimate
the CPT or guide the algorithm when data is available. As mentioned in
the previous section, the CPT describes the probability of a child node or
variable being within a state, given a combination of parent state values
[19,20].

The next step is to evaluate the model and its applicability through
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Fig. 2. Steps to build a Bayesian network.

validation. Kaikkonen et al. [9] explain the existing methods for model
validation, which can be divided into.

“Train and test,” when the performance of a data-based model is
evaluated against other data sets not included in the modeling
process;

“Cross-validation™” is when database pieces are removed repeatedly,
and the constructed model is tested against the excluded data.;
“Expert evaluation”, is when expert judgment is used to evaluate the
model results.

“Sensitivity analysis”, which tests the strength of the links within the
model and the value of information;

Goodness-of-fit, which identifies the model’s capacity to predict the
same data used to build the model.

Finally, the application of the model will provide the expected
analysis. For model use, four categories are used. When modelers
compute posterior probabilities, model use is classified as inference,
evidence propagation or belief upgrading [21]. Another option is
characterization when no previous probabilities exist on the problem at
hand, and BN is used to obtain the first result. In the end, if there are
inconsistencies or unrealistic results, modelers might restart the process,
back to redefining the model’s objectives.

These steps are translated into attributes to aid the evaluation of the
BN construction in the reviewed studies and will serve as a basis for
analyzing the publications and recommendations for future applications
of BN in the energy sector.

Source: Based on [22].

3. Review methodology

A systematic review is a comprehensive, structured, systematic ex-
amination of the existing evidence on a particular research question. It is
evidence synthesis involving a thorough search, critical appraisal, and
synthesis of relevant studies to answer a specific research question. A
systematic review aims to provide a comprehensive, transparent, and
unbiased summary of the current evidence base on a particular topic.
They are considered the highest level of evidence in the hierarchy of
evidence and are widely used in health and social sciences research to
inform clinical and policy decision-making. This review aims to sum-
marize the use of BN in the energy sector, providing an overview of the
practice and applicability of this methodology in the energy sector. The
parameters established for this review are shown in Table 1.

The application of BN in the energy sector has a wide range of ob-
jectives, such as blowouts during the drilling of oil wells [5], accidents in
natural gas stations [23] and economic risk assessments [14]. However,
many of these applications lack proper reporting of methodological
choices made. Therefore, this review analyses the literature to provide
future research with insights and recommendations for a suitable
description of BN implementation. This work used the following sys-
tematic review methodology to analyze the use of BN in energy studies
properly.

The search for articles was conducted on Web of Science and Scopus
in January-February 2023. The search strings were defined as “energy

Table 1
Systematic review protocol used in this study.

Description Review of papers using Bayesian networks to assess

technological development risk

Objectives This review aims to identify the uses of Bayesian networks and
causal maps to assess technological development risk in the
energy sector and to identify which variables affect their
development the most.

Bayesian networks; Bayesian causal maps; risk assessment;
technology risk; energy sector

Scopus; Web of Science

English; between 2018 and 2022.

Keywords

Source Engine
Source Selection
Criteria

Bayesian network risk” to explore the studies that apply BN in the energy
sector context. This review only focuses on articles in English from 2017
to 2022 and published in peer-review scientific journals.

The process of article selection is shown in Fig. 3 (left). First, articles
were screened by title and abstract to check for their fit to this study’s
objectives after removing duplicate records. To be included in the re-
view, the articles had to analyze some risk aspects of an energy system,
infrastructure, economic viability or any other application of the BN
model to risk assessment within the energy sector. From the 832 records
found in the searched database, 645 were excluded from the analysis for
not dealing with the energy system.

After screening each abstract and title, the remaining 187 records
were screened. 69 articles were excluded in this step of the review. From
these, 6% were removed because they were reviews, 11% of the texts
were unavailable for download, and 83% used different Bayesian
methods for analysis other than the network.

Therefore, 118 publications were selected for further analysis. These
publications were screened based on the steps for building a BN
explained in section 2.1 to determine the quality of the application of BN
in the energy sector. The articles were screened for the sector of interest,
type of risk analyzed, the objective of the model, variables used in the
model, who selected the variables and source of information for the
selection, who defined the interlinkages between the variables and the
source of information for the definition of the interlinkages of variables,
who and how the conditional probabilities were defined, the number of
experts involved in the framing of the model and the type of BN used in
the analysis. Table 1 shows the attributes analyzed in this review.

4. Results
4.1. Scope of analyzed models

The 118 articles included in the analysis presented a variety of risk
assessments in different domains and sectors. Fig. 4 shows a word cloud
of the focus of each article regarding the risk they intend to investigate.
The most targeted types of risk can be seen in this word cloud and are
heavily focused on oil&gas and nuclear power chains, involving infra-
structure of oil wells, such as the risk of oil spills and oil well blowouts,
gas pipeline leakages and accidents in nuclear power plants. For
example [5], used BN to analyze the risk of an offshore well blowout
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Fig. 3. Step-by-step process for literature screening (left) and papers included in the analysis by year (right).
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Fig. 4. Word cloud of risk assessments in the energy sector of the articles included in the review.

during drilling, and [24] investigated the risk of an oil well blowout
during managed pressure drilling. In nuclear power plants, the examples
range from seismic failures [25], vulnerability to floods [26], software
reliability of digital instrumentation [27] and cyber-attacks [28].

Each article was also classified into the categories in Table 3. Cate-
gories are split into “risk of” and “risk to,” according to the type of risk
assessed in each article. While “risk of” studies investigate the influential
factors on the risk of events, “risk to” analyses involve identifying and
assessing potential risks, developing strategies to mitigate and manage
those risks, and ensuring that the system can withstand and recover from
disruptive events. For example, “Risk to resilience” refers to the trans-
formation from a state of vulnerability to a state of robustness, where
systems can withstand and recover from potential adverse events. Sar-
war et al. [29] focus on the resilience analysis of an offshore oil and gas
facility. The authors use a risk analysis approach to identify potential
risks to the facility and develop strategies to enhance the system’s
resilience during a potential hydrocarbon release.

Accidents, leaks, cyber-attacks, oil spills, and structural health are
some risk categories on which the articles in this review focus. Although
a leak or an oil spill might be considered an accident, most of the time,
authors did not specify the type of accidents they were referring to, and
their risk analysis focused on a general risk of accidents. When a specific
accident was mentioned, they were split into different categories.

While “risk of” studies investigate the influential factors on the risk of
events, “risk to” analyses involve identifying and assessing potential
risks, developing strategies to mitigate and manage those risks, and

ensuring that the system can withstand and recover from disruptive
events. For example, “Risk to resilience” refers to the transformation
from a state of vulnerability to a state of robustness, where systems can
withstand and recover from potential adverse events. Sarwar et al. [29]
focus on the resilience analysis of an offshore oil and gas facility. The
authors use a risk analysis approach to identify potential risks to the
facility and develop strategies to enhance the system’s resilience during
a potential hydrocarbon release.

Each article was attributed to a sector within the energy domain, and
the risk assessments were classified into the risk classes shown in
Table 2, which are presented in Fig. 5. It is important to note that the risk
classes shown are not limited to one per article, but instead, they are
related to the factors that influence risks taken into account within each
proposed model. Despite the broad range of risk assessments, there is a
high concentration of studies in the technical risk domain applied in the
oil & gas industry and nuclear power plants, followed by environmental
risk assessments involving the oil&gas and nuclear industries.

88% of the articles in the review addressed some technical param-
eters to assess risks in the oil & gas and nuclear power plants. One
example is the work of Sarwar et al. [29], who evaluated hydrocarbon
release based on technical aspects of offshore oil & gas facilities design,
such as the platform hose connection system, valves control, and
telemetry system and equipment vibration. Groth et al. [30] used
technical parameters of a nuclear power plant like cold pool tempera-
ture and level, peak coolant temperature, cover gas pressure and
Doppler feedback reactivity to investigate the risk of accidents.
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Table 2
Attributes, their related questions and the class of each attribute analyzed in this
review.

Attribute Question Class

Sector Within the energy sector,  Oil & gas, nuclear power,

Objective of the
study
Risk class

Variables

Model framing —
Who?

Model framing —
Source of
information®

Model structure —
Who

Model structure —
Source of
information

Probabilities —
Who

Probabilities —
Source of
information

Discretization

Validation

what is the main focus of
the article?

What is the main focus of
the article?

What type of risk is being
studied?

What variables were
included in the model?
Who selected the
variables in the model?

How were the variables
selected?

Who participated in
defining the links
between variables?

How were the links
between variables
defined?

Who participated in
producing the
probabilities?

How were the
probabilities produced?

How was discretization
done?

What type(s) of
validation method(s) is
(are) used?

electricity in general, hydrogen,
wind turbines, energy systems in
general, Carbon Capture and
Storage (CCS), biodiesel, gas
turbines, combined cooling, heat
and power, renewable energy,
wave energy and biofuels in
general.

Several possibilities — Word
cloud result

Technical, environmental,
safety, social, economic,
political, legal

Several possibilities — word
cloud result

Modeler or modeling team one-
disciplinary (MO)/Modeling
team multidisciplinary (MM)/
External expert or expert team
one-disciplinary (EO)/External
expert team multidisciplinary
(EM)/Non-expert stakeholders
(SH)/No information (NI)
Learned or modeled based on
data (DL)/Literature-based (L)/
Expert judgment (EJ)/Non-
expert judgment (NJ)/Other
(0)/No information (NI)
Modeler or modeling team one-
disciplinary (MO)/Modeling
team multidisciplinary (MM)/
External expert or expert team
one-disciplinary (EO)/External
expert team multidisciplinary
(EM)/Non-expert stakeholders
(SH)/No information (NI)
Learned or modeled based on
data (DL)/Literature-based (L)/
Expert judgment (EJ)/Non-
expert judgment (NJ)/Other
(0)/No information (NI)
Modeler or modeling team one-
disciplinary (MO)/Modeling
team multidisciplinary (MM)/
External expert or expert team
one-disciplinary (EO)/External
expert team multidisciplinary
(EM)/Non-expert stakeholders
(SH)/No information (NI)
Learned or modeled based on
data (DL)/Literature-based (L)/
Expert judgment (EJ)/Non-
expert judgment (NJ)/Other
(0)/No information (NI)
Learned from data by an
algorithm (DL)/Based on data-
analysis (incl. literature) (DA)/
Elicited based on expert
knowledge (EE)/Elicited from
non-expert stakeholders (ES)/
Equal Distance Interval (EDI)/
Equal Frequency Intervals (EFI)/
Other (O)/No information (NI)
Train & Test (TT)/Cross
Validation (CV)/Expert
evaluation (E)/Comparison to
previous models (PM)/
Sensitivity analysis (SA)/
Goodness of fit (GF)/No
validation (NV)

Table 2 (continued)
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Attribute

Question

Class

Model Use

Number of experts

Type of BN

Intended end-user
of the model

How is the study’s model
used to answer the
research questions?

How many experts were
involved in the
construction of the
model?

What type of BN was
used in the model?

Who is the intended end-
user of the model?

Inference (I)/Characterization
(CH)/Other (0)/Not applicable
(NA)

Number of experts involved/No
experts involved (NE)/No
information (NI)

Types of BN (shown in the
results)

The model developers
themselves (MD)/Other

scientists (0S)/Decision-makers
(incl. Planners and managers)
(DM)/Stakeholders (SH)/
Teachers (T)/Common public
(CP)/Not clear (NC)

Table 3
Risk focus of the reviewed articles and each occurrence that falls in each
category.

Risk of References

Accidents (including fires) [3,23,26,30,35,48-50,52,53,56,58,60-62,
68-87]

[40,51,57,88-92]

[27,28,47,93-95]
[38,39,41,42,44,63,65-67,96-104]
[5,24,37,105-107]

Leaks

Cyber attacks

Failures and faults

0il spills and blowouts

Seismic hazards [25,108,109]
Risk to
Performance [34,110]

Resilience and reliability
Security, safety and human

[1,29,64,111-114]
[2,15,36,115-118]

error

Structural health [59,119-126]

Investments [14,31,127-129]

Other risks (including multi- [13,32,43,54,130-137]
risk)

On the other hand, few studies focus on assessing the risk of
renewable energy, with 11% of the articles in the review. Biofuels, for
example, are analyzed by Sajid et al. in three different publications [13,
31,32], which focus on biodiesel economic risk, the impact of corona-
virus on the sustainability of the biomass supply chain and the perfor-
mance of biodiesel.

4.2. Variable selection

The evaluation of BN models in this review started with the variables
included in the model, who selected these variables and the source of
information used to include each variable in the model framework.
Fig. 6 shows the word cloud of variables in the studies included in the
analysis. As can be seen, technical variables related to corrosion, pres-
sure, valves, sensors, temperature, the flow of fluids of energy infra-
structure and domain-specific instrumentation, computation and
automation are included in the BN models to evaluate the risk of failure,
leakages and safety in energy systems operations. Although human error
is the most prominent known factor in the case of accidents in the oil-
&gas industry [33], for example, only 10% of the analyzed studies
included this variable in their models.

These variables are selected mainly by the modeling groups them-
selves (Fig. 7), with 87% of the articles depending on the knowledge of
their authors to establish the model framework and in the majority of the
studies (82%), these modeling groups are composed of people involved
in one area of expertise, for example, engineering. Most of the time,
these modelers take information from existing data (Data from the
Literature DL) to verify the effect of each variable on the risk being
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assessed. Another option widely used is the mixture between expert
knowledge and data available (DL/EJ). Expert judgment is used mostly
when data is unavailable or to fill missing gaps. For example, Ashrafi
[34] had data indicating an operating or failed state of components in
petroleum refineries. On the other hand, for variables related to human
error in individual, group, organizational, and environmental segments
of the model, experts’ elicitation had to be used to fill in the missing
values of the CPT developed by the author.

In their majority (78%), BN links have been determined by modelers.
Again, expert judgment was used to fill gaps in the existing data.

Although risk assessments are a multivariate problem in most cases,
the use of multidisciplinary teams to define the variables and their links
appears only in five studies [2]. in their application of the BN model to
assess the risk of human safety in energy production units [35], in their
analysis of single-phase grounding of power transmission lines [36],
who studied the risk of nuclear proliferation [37], in their study on oil
spills; [34], who analyzed the risk of hydro desulphurization technology
in oil refineries. Note that there is a difference between modelers
selecting variables based on expert judgment and having the experts
build the framework of the model based on their knowledge. This dif-
ferentiation appears in the articles when the authors mention that var-
iables were selected “based on the expert judgment” or “experts selected
the variables."

4.3. Produced probabilities

The quantifiable portion of a BN model is the definition of CPT. It
specifies the probability of an event based on the occurrence of other
events. In the case of child and parent nodes, the number of probabilities
to be determined increases exponentially with the number of influential
variables or child nodes. Fig. 8 shows who and how the probabilities
were estimated in the reviewed articles. As for the variable selection, the
modelers mainly estimated CPT using data or data with some input from
experts’ judgment.

From the full-text analysis, it was possible to perceive that the arti-
cles focused on technical issues or included technical variables such as
digital control and automation sensors information. Most papers used
auxiliary methods to analyze risk and translate the structure of these
methods to BN models. Fault-tree [1,38], Event-tree [39], Bow-tie [40,
41], GO model (or GO-FLOW) [42,43], structural reliability analysis
[26], failure mode and effects analysis [23], and Living Risk Assessment
framework [44] are some examples of risk analysis methods that served
as a basis for the construction of the CPT and structure of BN models
used in the articles reviewed.

On the other hand, examples show that merging other methods with
expert judgments with multidisciplinary points of view is possible [35].
show a robust methodology to define the CPT using the Delphi technique

Energy Strategy Reviews 47 (2023) 101097

(an expert-based process used to gather and arrive at a group opinion or
decision by a survey [45]), which guarantees a more robust and more
straightforward definition of the produced probabilities in the study.

4.4. Model handling

In modeling studies, it is essential to explicitly explain the premises
and data used in the construction of the model and how it was handled to
avoid bias from the reader. However, the analyzed articles in this review
lacked the reliability and transparency necessary for scientific commu-
nication since reproducibility is compromised when incomplete infor-
mation on the methodology followed to construct the model is provided
[46]. Fig. 9 shows the discretization (top), model application (center)
and model validation method (bottom) of the articles included in the
review. For intended end-users of the model, number of experts involved
and BN type, see Fig. 10.

First, discretization is an important task of BN because it influences
the construction of the CPT. In many cases, true/false variables are used,
and no discretization is needed, but no explanation is given on this
matter, which makes it harder for the reader to understand the true class
of the variable. Moreover, 46% of the articles presented no information
(NI) about the method to discretize the variables used in the BN models.
However, examples of good practices are found in Refs. [30,47], which
clearly state the discretization method used, which in these cases was
the equal distance method.

Second, when applying the model, most papers used BN to make
inferences about the variable representing the risk being analyzed, fol-
lowed by characterization of the risk, i.e., the first estimation of the risk
under interest. However, there is a lack of proper communication of this
objective within the studies. Most of the articles assume that BN is
applied for inference and forget to specify inference in the statement of
their objectives.

Lastly, validation in the BN model is a sensitive issue. Fig. 9 shows
that 39% of the studies in the review did not validate their models, while
28% used sensitivity analysis as a validation method.

4.5. Model value

60 out of 118 articles mention that BN would help the decision-
making process or support decision-makers with their work, and most
of the time, models are constructed using a sector-specific database or
from a case study.

One issue with the value of the models created in the studies
reviewed is the unclear method for expert judgement elicitation. Even
though Figs. 7 and 8 show considerable expert support for defining the
variables, structures and constructing the CPT in each model, the ma-
jority of articles (58 out of 118) do not specify the elicitation method,

Who produced the probabilities

MO-Modelers one-disciplinary
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EO-Experts one-disciplinary
EM-Experts multi-disciplinary
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MO EO EM NI MM
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40 1

301
201

count
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Fig. 8. Estimation of probabilities, who produced them (top) and how they were estimated (bottom).
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How the discretization was done

count
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DA-Based literature
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Fig. 9. Discretization method (top), application of the model (center) and validation method (bottom).
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Fig. 10. Intended end-users of the model (top), number of experts involved (center), Bayesian network type (bottom).

how the data obtained was handled or even the number of experts that
have been elicited to build the model. In contrast [36], explicitly dis-
closed how, who and why the experts were elicited and presented the
second highest number of experts elicited, with 13 in total, behind [15],
with 22 experts included in their study.

Finally, 74% of the studies choose static BN when it comes to
modeling risk in energy, which alone does not implicate a low-value
model. However, energy systems are dynamic and, in their majority,
creating a dynamic model would make it more complex but closer to
reality. Authors like [48,49] mention dynamic models as steps for future
research.

5. Discussion
5.1. The most relevant studies in the field

To highlight the most prominent studies in the field, this section
analyses the most relevant studies based on their number of citations
based on the Web of Science and Scopus database.

Two references stand out due to their influence in other publications
in the field. Wu et al. [50] employ BN to analyze natural gas pipeline
network accidents using the Dempster-Shafer evidence theory to weigh
expert knowledge. The authors have 108 citations, representing the
highest citation in the dataset. Chang et al. [51], with 43 citations, study
the risk of hydrogen leakage in hydrogen generation units based on a
dynamic Bayesian network built using data and expert knowledge.

Indeed, both studies reflect the use of Bayesian networks in energy
systems in their technical aspect and focus on accidents and leakages.
However, while Wu et al. [50] analyze the 0il& gas sector, Chang et al.
[51] stand out for their application in hydrogen production.

5.2. Application of BN in the energy sector

Energy is a part of the everyday life of most humans and is the result
of complex systems development, which are not immune to several
classes of risk (technical, environmental, economic and so on). There-
fore, the literature on risk assessment of energy production, distribution
and use includes various types of risks from technical, economic, envi-
ronmental, safety and other areas, showing the broad application of BNs
in energy risk modeling.

BN is an appropriate methodology to analyze risk since it is anchored
on stochastic events and allows an event to happen conditioned to other
events. It allows for an investigative process of causality and provides
means to prevent catastrophic or damaging events. For this reason, some
of the publications in this review might focus on some adjacent activity,
such as the work by Ref. [52]. The authors focused primarily on vessel
allision near offshore wind farms. Therefore, the variety of applications
in the energy realm can hamper the generalization of the analysis of this
review, and the inclusion of such studies is subjective and open to
criticism.

Although BN is helpful for risk assessments, the application of this
methodology is extraordinarily case-specific, and its replicability is not
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possible due to the different factors influencing each type of risk. Hence,
the resulting BN model is completely different even when dealing with
similar risks. Considering the works by Refs. [5,25], both studies
analyzed the risk of an oil well blowout during drilling but resulted [25]
in two different model structures in terms of the number of variables,
types of variables and interlinkages between variables as well as CPTs.

As mentioned, BN is a flexible tool for risk assessment in terms of the
type of risk and the activity it models. Nonetheless, what catches
attention is the concentration of studies on accidents, infrastructure
vulnerability and failure of safety systems within the energy sector,
especially in the oil & gas sector. With the current changes expected in
the energy sector due to climate change and other global issues such as
pollution and international and regional conflicts over resources, one
could expect that more environmentally friendly energy options would
be the focus of risk analysis, like the ones done by Ref. [53] (renewable
energy) and [31] (biodiesel), or such as the one done by Ref. [54], who
investigated the impacts of social and environmental conflicts on energy
projects.

5.3. Modeling aspects and implementation technicalities

Considering the diversity in the articles and models studied in this
review, they provide an overview of the implementation techniques of
BN models. In their majority, models are based on expert judgement in
at least one of the steps of the modeling process, either selecting the
variables, defining the links, creating the CPTs or even validating the
model. However, some improvements are still necessary in terms of
transparency on expert selection, such as who they are, how they were
selected and even how many experts took part in the model construction
process. Future authors using BN should follow guidelines for expert
elicitation [55].

Discretization is another critical aspect of BN modeling that authors
ignore, even when the BN is discrete. Discretization makes the con-
struction of CPT easier, especially when involving expert judgment,
because it allows for the application of probability estimation using
simplifiers, such as the ranked nodes method (RNM) [7], weighted sum
algorithm (WSA) [16], and the analytic hierarchy process (AHP) method
[17]. In discrete models, the process of CPT elicitation grows exponen-
tially with the number of nodes without applying such methods; there-
fore, discretization helps reduce experts’ mental load. However,
selecting a discretization method that reduces the loss of information,
clearly states how discretization was done and maintains the represen-
tation of relevant changes in the system being assessed is vital.

Another important aspect of modeling overlooked and under-
reported by authors, which has also been noticed by Ref. [9] in their
review, is model validation. Sensitivity analysis was often used where
validation was reported, followed by a comparison to previous models.
Nevertheless, validation should be encouraged to guarantee the appli-
cability of the models to real-world situations.

5.4. Authors’ perception of the pros and cons of developed models

Each article included in the review was screened for the pros and
cons of the models built. Generally, the features of BN models that make
them suitable for risk analysis have been pointed out as pros of the usage
of BN in the specific objectives of each study. Diagnosing system failures
[301, determining the likelihood of various events under uncertainty
[56], the interconnection between risk factors [29], incorporating a
wide range of contributing factors ignored in previous studies [57],
evaluating the accident evolution process and accident consequences
[58], useful as a post-auditing tool to evaluate progress in mitigating
risks [49], qualitatively and quantitatively analyze cause factors in
emergency processes [48], adapt to missing data [59], incorporation of
diverse data streams [60], are some of the pros mentioned by the
authors.

On the negative side, authors have stated cons that are intrinsic to BN
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models in general, such as applying to a particular country [3,61], using
simple or generic scenarios [52], subjectivity due to the inclusion of
expert judgment [62,63,64,36,54], need for real-world field data
application [65], high computational effort [26], lack of accurate data
[66], difficulty in obtaining data from real-life applications due to
confidentiality [67], limited risk categories [68,41,36], not including
experts from multi disciplines [31], use of generic data [69].

5.5. Recommendations for future research

In this section, the recommendations for future research found in the
articles are summarized and displayed in Table 4. The topics included
are not exhausted of all possible BN developments when applied to the
energy sector, and some of these could also be generalized to applica-
tions of BN in other sectors.

Dynamic models and using continuous variables are improvements
to BN models that help BN model reality more precisely since many of
the issues influencing risk in the energy sector are dynamic and
continuous. Therefore, static and discrete models could represent an
oversimplification of events.

Data availability is another issue in the construction of BN models,
which also leads to the necessity to include expert judgments in the
construction of the model, leading to subjectivity issues. In the reviewed
articles, the need for more data has been pointed out as an important
future development in BN. Although data is seldom available as needed,
modern data mining methods could aid in obtaining the necessary data
for the model construction.

Model validation is a crucial aspect of any modeling; otherwise, its
application to real-world problems could be misleading. In this sense, for
future works, validation should always be considered and, if not
possible, justified. While model validation helps guarantee the replica-
bility of the model to real-life situations, optimizing the model structure
helps the reduction of model complexity, which influences subjectivity
when expert judgment is required to build the model. When the struc-
ture is optimized, modelers will spend less time with expert elicitation
without losing the model’s ability to provide helpful information.

Other topics, such as model translation into software, testing with
other scenarios, cooperating with enterprises and testing with real sys-
tems, relate to model applicability and reproducibility. While models are
helpful for decision-makers, their actual use can be tricky depending on
their level of knowledge around programming and reading models’
outputs. Therefore, producing some software that enables decision-
makers to test different scenarios quickly and explore the multitude of
outcomes of each model should break down barriers for model appli-
cation. Moreover, stakeholders are generally only involved in specific
parts of the modeling but not throughout the entire process, which leads
to oversimplifications or generic models. If stakeholders and enterprises
interested in the risk being analyzed through the models were included,
models should become more consistent with practical needs.

Finally, global environmental and social climates are constantly

Table 4
Summary of future research recommendations to enhance the applications of BN
in the energy sector.

Topic Source

Dynamize the model [30,49,57,106,111]

Use of continuous variables [29]
Using data mining methods [58,62]
More data [61,91,54,138]
Validation of the model [117]
Optimize model structure [26]
Translation of model into software [92,65]
Test with other scenarios [74]
Cooperate with enterprises 671
Test with real systems [99,126]
Integrate with climate models [971
Include economic and environmental factors [32]
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changing and intrinsically related to energy production and consump-
tion. Therefore, holistically including other aspects of the social and
environmental domain in BN models would bring new insights into the
risks associated with developing energy systems and their components.
Furthermore, climate change can impact the energy sector and energy
markets everywhere, and interconnections between BN models and
climate models are advisable to unravel new layers of risk within energy
products.

6. Conclusions

This review examined BN applications in the energy sector, including
production, use and distribution. The systematic review showed that
using BN in risk analysis encompasses various objectives and is focused
on different types of risk, such as leaks, cyber-attacks, failures, faults, oil
spills, investments, structural health and others. Nonetheless, although
the application areas were diverse, most BN models in the review were
interested in technical assessments of oil & gas infrastructure risk,
technical assessment of nuclear power plants risks or environmental
risks of oil & gas deployment, with only a few studies covering socio-
economic risks.

BN is an essential tool for the energy sector, for it can help decision-
makers make informed decisions about energy investments, energy
policy, and energy operations. BN can provide valuable insights into the
trade-offs and risks involved in different decisions by allowing for the
analysis of possible scenarios and the probabilities of different out-
comes. BN can easily integrate multiple sources of data and knowledge
about energy systems, such as historical data, simulations, expert
opinions, and sensor readings. This helps to build a completer and more
accurate model of the system and to identify cause-and-effect
relationships.

However, the need for more transparency regarding using experts’
judgments and validating the models has been highlighted to guarantee
their ability to support real-world decision-making procedures. More-
over, it is suggested that social, environmental and economic aspects are
included to provide a more holistic risk assessment in sustainability,
especially when considering climate change prospects. Developing
sound and robust BN based on state-of-the-art methods such as Deep
Learning Models is another step toward more reliable models.

In conclusion, applying BNs in the energy sector can shift the context
into more environmentally friendly energy options, assess their risk in
an oil & gas-dominated sector, and bridge the gap between science and
real-world applications.
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